THREE BIOLOGICALLY ACTIVE HELIANGOLIDES FROM HELIANTHUS ANNUUS

OTMAR SPRING, KLAUS ALBERT* and ACHIM HAGERT

Institut für Biologie I, Allgemeine Botanik und Pflanzenphysiologie Universität Tübingen, Auf der Morgenstelle, D-7400, Tübingen, West Germany; *Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle, D-7400 Tübingen, West Germany

(Revised received 25 March 1982)

Key Word Index—Helianthus annuus; Compositae; ¹H- and ¹³C NMR; sesquiterpene lactones; germacranolides; heliangolides; biological activities.

Abstract—Growth inhibiting substances in *Helianthus annuus* have been investigated. From the ethanolic extract a new germacranolide with an α -methylene- γ -lactone moiety, the heliangolide niveusin B and its ethoxy derivative were isolated and their structures elucidated by spectroscopic methods. The biological activity of each was determined by inhibition in *Avena* coleoptile tests and antimicrobial tests.

INTRODUCTION

From the sunflower, Helianthus annuus we previously reported the isolation of a biologically active furanoheliangolide (1) [1], identical with niveusin C from H. niveus [2], a compound which was also found in H. maximiliani [3]. Further investigations on growth inhibiting substances from young leaves and the apical part of the stem of H. annuus resulted in the extraction of three additional sesquiterpene lactones: the known compound niveusin B [2], a new germacranolide of the tifruticin-type, and 3-ethoxyniveusin B. The latter ethoxyheliangolide was shown to be formed from niveusin B during the ethanolic extraction.

RESULTS AND DISCUSSION

The extraction of young leaves and the upper part of the stem of *H. annuus* yielded, apart from 1 [1], compound 4, which was identical in its spectroscopic data to niveusin B, a heliangolide previously reported from *H. niveus* [2]. In addition we were able to isolate a new germacranolide (2) and an ethoxyheliangolide (3). The structures proposed are based on IR, ¹H, ¹³C NMR, and mass spectral measurements.

The ¹H NMR spectroscopic data of 2 indicated a

close relationship to deoxyfruticin [4]. Analysis of the 13 C NMR spectrum revealed an opening of the hemiketal linkage in structure 1, and also the existence of a carbonyl function at C-3 is indicated by the 13 C NMR spectrum. The location of the second hydroxy group at C-15 was proved by single frequency decoupling experiments connecting the two protons at δ 4.44 and 4.30 to the 13 C resonance at 63.0.

The structure of the ethoxy derivative (3) was deduced from the appearance of two complex signals at δ 3.62 and 3.24 together with a triplet at 1.18. By decoupling experiments it was shown that these signals arise from an ethoxy function at which the two protons of the CH₂-group are not equivalent. In the ¹³C NMR spectrum of 3 two new signals at δ 58.4 and 15.2 also appeared. These signals could be assigned to the OCH₂ and the CH₃ carbons of the ethoxy group, respectively. The lack of the signal at δ 77.3 present in compound 1, together with a new CH₂ signal at δ 37.5 indicated the loss of the hydroxy group at C-1. Since an ether function should induce a downfield shift of the carbon atom attached, and this was not observed in the signal of C-15, only structure 3 is possible.

In order to clarify whether 3 was a naturally occurring product or an artefact caused by the extraction conditions, a modified extraction proce-

2552

Table 1. ¹H NMR spectral data of compounds 2 and 3 (400.1 MHz, CDCl₃, TMS as int. standard)

	2	3
Η – 1α	7.04 d	1.85 m*
$H-1\beta$		2.30 m*
$H-2\alpha$		2.07 m*
$H-2\beta$	6.27 d	2.30 m*
H-5	6.07 dt	5.93 dt
H – 6	5.46 dd	5.46 dd
H - 7	3.61 m	4.27 m
H ~ 8	5.43 ddd	5.64 ddd
H -9α	2.02 dd	2.01 dd
H ~ 9β	2.57 dd	2.20 dd
H - 13a	6.37 d	6.27 d
H – 13b	5.84 d	5.62 d
H - 14	1.54 s	1.53 s
OH – 14	2.40 br	
H – 15a	4.44 dd	4.20 d
H - 15b	4.30 dd	3.95 dd
OH - 15	1.82 br	2.22 br
H - 3'	6.08~qq	6.04 qq
H-4'	1.93 dq	1.91 dq
H - 5'	1.75 dq	1.74 dq
$H - 1''\alpha$		3.62 dt
$H - 1''\beta$	_	3.24 dt
H - 2''	_	1.18 t

J (Hz): compound 2: 1,2 = 17.0; 5,6 = 9.1; 5,15a = 1.1; 5,15b = 1.2; 6,7 = 1.7; 7,8 = 3.3; 7,13a = 7,13b = 1.7; 8,9 α = 9.6; 8,9 β = 6.3; 9 α ,9 β = 14.0; 15a,15b = 14.0; 3',4' = 7.2; 3',5' = 1.5; 4',5' = 1.5; compound 3: 5,6 = 9.1; 6,7 = 2.1; 7,8 = 4.3; 7,13a = 2.9; 7,13b = 2.4; 8,9 α = 6.8; 8,9 β = 5.3; 9 α ,9 β = 12.3; 15a,15b = 14.3; 3',4' = 7.2; 3',5' = 1.4; 4',5' = 1.7; 1" α ,1" β = 9.7; 1" α ,2" = 1" β ,2" = 7.0; 15 - OH, 15b = 6.3.

*Overlapping signals, interchangeable.

dure with water and chloroform, thus avoiding the use of alcohol, which is known to react with trifruticin- and tirotundin-like sesquiterpene lactones [4, 5], was employed. TLC experiments as well as spectroscopic investigations and bioassays clearly indicated that 3 was formed during alcoholic extraction whereas 1, 2 and 4 could be identified in all extracts. The ethoxyheliangolide is formed by reaction of ethanol with the 3-OH group of 4.

A further compound [characterized by its R_f 0.3 on TLC in methylene chloride-acetone-ethyl acetate (5:4:1)] always changed partly into 2 during purification, thus rendering exact NMR spectroscopic measurements impossible. Because of the higher polarity on TLC (R_f of 2 is ca 0.42) and the lack of a shoulder in the UV spectrum (typical for a carbonyl group) it might be the 3-hydroxy form of compound 2.

The sesquiterpene lactones from sunflower were biologically active. The linear reduction of growth in the *Avena* coleoptile test at a concentration of $100 \mu M$ was 80% (± 6) for 2, 57% (± 9) for 3 and 61%

Table 2. ¹³C NMR spectral data of 2 of 3 (100.6 MHz, CDCl₃, TMS as int. standard)

arbon no.	2	3
1	161.3 d	37.5 t
2	129.8 d	40.8 d
3	196.3 s	108.6 q
4	135.9 s	136.6 s
5	140.5 d	130.5 d
6	75.7 d	75.9 d
7	48.7 d	49.6 d
8	73.9 d	71.4 d
9	47.1 t	$40.0 \ t$
10	72.1 s	83.7 s
11	141.7 s	143.4 s
12	169.6 s	169.5 s
13	124.9 t	122.5 t
14	28.9 q	26.8 q
15	63.0 dd	65.4 dd
1'	166.5 s	166.7 s
2'	126.8 s	$127.3 \ s$
3′	137.4 s	139.1 s
4'	15.8 q	15.7 q
5'	20.1 q	20.3 q
1"		58.4 dd
2"	-	15.2 q

(±6) for 4. Anti-microbial activity was tested against bacteria and fungi. Compound 2 was the strongest inhibitor against bacteria (MIC: $15 \mu g/ml$ on Bacillus brevis; $50 \mu g/ml$ on Proteus vulgaris; $95 \mu g/ml$ on Eremothecium ashbyi) whereas 3 was more active against fungi (MIC: $40 \mu g/ml$ on B. brevis; $85 \mu g/ml$ on P. vulgaris; $65 \mu g/ml$ on E. ashbyi) than compound 4 (MIC: $35 \mu g/ml$ on B. brevis; $87 \mu g/ml$ on P. vulgaris; $98 \mu g/ml$ on E. ashbyi).

EXPERIMENTAL

The plants of Helianthus annuus var. giganteus were grown in the greenhouse for 3-4 weeks. Leaves and the upper part of the stem were harvested and extracted in the usual manner [1]. The crude extract was chromatographed by CC (Polygosil 60-4063), eluted with petrol (fractions 1-5), petrol-CHCl₃ (1:1) (6-10), CHCl₃ (11-15), CHCl-EtOH (49:1) (16-20), CHCl₃-EtOH (19:1) (21-25), and CHCl₃-EtOH (9:1) (26-28).

Fractions 16–20 afforded the known heliangolides 1 and 4. Compound 2 could be purified from fractions 21–25 by TLC (CH₂Cl₂–Ac–EtOAc, 5:4:1). Yield: 45 ± 2.6 (s.e., n=12) μ g/g fr. wt. IR $\nu_{\text{max}}^{\text{CHCl}_{3}}$ cm⁻¹: 3570 (OH), 1750 (OCOR), 1700 (ester), 1640 C=C). MS 70 eV m/z (rel. int.): 376 [M]⁻¹ (2.5), 358 [M-H₂O]⁺¹ (0.5), 276 [M-Ang]⁺¹ (5.0), 258 [276 – H₂O]⁺¹ (5.7), 100 (C₅H₈O₂) (8.6), 83 (C₅H-O) (100), 55 (C₄ H₇) (82.1). (Calc. for C₂₀H₂₄O-: 376.405. Found: (MS) 376.) UV $\lambda_{\text{max}}^{\text{EOH}}$: end absorption, $\epsilon = 25$ 200 at 215 nm and a shoulder at 250 nm ($\epsilon = 14$ 700), typical for a carbonyl function.

Fractions 11-15 of the ethanolic extraction contained 3. Further purification was performed by HPLC (Nucleosil RP 18, 10 μ m, 250 × 4.8 mm, Waters M 6000, Reodyne 7125) in H₂O-MeOH (20:80). Yield: 11 ± 1.7 (s.e., n = 4) μ g/g fr. wt.

IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3570 (OH), 1755 (OCOR), 1720 (ester), 1650 (C=C). MS 70 eV m/z (rel. int.): 406 [M]⁺ (8.9), 388 [M - H₂O]⁺ (0.5), 375 [M-CH₂OH]⁺ (0.3), 360 [388 - C₂H₄]⁺ 2.1), 306 [M - Ang]⁺ (1.4), 288 [388 - Ang]⁺ (3.6), 99 (Ang) (6.4) 83 (C₅H₇O) (100), 55 (C₄H₇) (67.4), (Calc. for $C_{22}H_{30}O_7$: 406.475. found: 406). UV $\lambda_{\rm max}^{\rm EIOH}$: strong end absorption, ϵ = 18 500 at 210 nm.

Modified extraction. The plants were homogenized in H_2O , filtered and extracted by $CHCl_3$. The crude extract was purified by TLC (CH_2Cl_2 -Ac-EtOAc, 5:4:1). The inhibitors were analysed by bioassay or by colouring with Ehrlich's reagens on TLC.

Bioassay. Avena coleoptile tests and anti-microbial testing were performed as described earlier [1].

Acknowledgements—We thank Dr. J. Kupka and Dr. T. Anke, University of Tübingen, for supplying and for assistance with antimicrobial tests.

REFERENCES

- 1. Spring, O., Albert, K. and Gradmann, W. (1981) Phytochemistry 20, 1883.
- 2. Ohno, N. and Mabry, T. J. (1980) Phytochemistry 19, 609.
- 3. Herz, W. and Kumar, N. (1981) Phytochemistry 20, 93.
- Herz, W. and Sharma, R. P. (1975) J. Org. Chem. 40, 3118.
- Baruah, N. C., Sharma, R. P., Madhusudanam, K. P., Thyagarajan, G., Herz, W. and Murari, R. (1979) J. Org. Chem. 44, 1831.